

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: https://img.shields.io/badge/Tripal-4.0--alpha1-brightgreen]Tripal Dependency
[image: https://img.shields.io/badge/Status-Active%20Development-orange]Development Status

Developed by the University of Saskatchewan, Pulse Crop Bioinformatics team.

Introduction

This module provides a basic interface to allow your users to utilize your
server’s NCBI BLAST+.

Specifically it provides blast program-specific forms (blastn, blastp, tblastn,
blastx are supported). In the future, there will be a single form where you
will be able to select either a nucleotide or a protein database to BLAST
against regardless of the type of query and it will decide which BLAST
program to use based on the combination of query/database type (ie: if you
selected a protein database on the nucleotide BLAST form then blastx would
be used).

BLAST submissions result in the creation of Tripal jobs which then need to run
from the command-line. This ensures that long running BLASTs will not cause
page time-outs but does add some management overhead and might result in longer
waits for users depending on how often you have cron set to run Tripal jobs.

The BLAST results page is an expandable summary table with each hit being
listed as a row in the table with query/hit/e-value information. The row can
then be expanded to include additional information including the alignment.
Download formats are allow users to download these results in the familiar
tabular, GFF3 or HTML NCBI formats.

Automated Testing

This package is dedicated to a high standard of automated testing. We use
PHPUnit for testing and CodeClimate to ensure good test coverage and maintainability.
There are more details on our CodeClimate project page [https://codeclimate.com/github/tripal/tripal_blast] describing our specific
maintainability issues and test coverage.

[image: https://api.codeclimate.com/v1/badges/5071f91a02a3fcafc275/maintainability]MaintainabilityBadge
[image: https://api.codeclimate.com/v1/badges/5071f91a02a3fcafc275/test_coverage]TestCoverageBadge

The following compatibility is proven via automated testing workflows.

[image: https://img.shields.io/badge/Tripal-4.x--dev-green]Tripal Version for following tests

Drupal	9.3.x	9.4.x	9.5.x	10.0.x
——–	——-	——-	——-	——–
PHP 8.0	[image: https://github.com/tripal/tripal_blast/actions/workflows/MAIN-phpunit-Grid1A.yml/badge.svg]Grid1A-Badge	[image: https://github.com/tripal/tripal_blast/actions/workflows/MAIN-phpunit-Grid1B.yml/badge.svg]Grid1B-Badge	[image: https://github.com/tripal/tripal_blast/actions/workflows/MAIN-phpunit-Grid1C.yml/badge.svg]Grid1C-Badge	
PHP 8.1	[image: https://github.com/tripal/tripal_blast/actions/workflows/MAIN-phpunit-Grid2A.yml/badge.svg]Grid2A-Badge	[image: https://github.com/tripal/tripal_blast/actions/workflows/MAIN-phpunit-Grid2B.yml/badge.svg]Grid2B-Badge	[image: https://github.com/tripal/tripal_blast/actions/workflows/MAIN-phpunit-Grid2C.yml/badge.svg]Grid2C-Badge	

Docker

git clone https://github.com/tripal/tripal_blast.git
cd tripal_blast
docker build --tag=tripal/tripal_blast:latest .
docker run --publish=80:80 -tid --volume=`pwd`:/var/www/drupal9/web/modules/contrib/tripal_blast tripal/tripal_blast:latest

GitHub Actions

This directory contains automated workflows executed by GitHub Actions.

Naming Conventions

File Name: [scope]-[purpose]-[extra_info].yml

- [scope] should be one of the following:
	- MAIN for only against the master branch
	- ALL for against all branches
	- PR if specific to pull requests
- [purpose] should be a one word description of the purpose (e.g. phpunit, coverage)
	- use snake-case if you must use more then one word (e.g. buildDocker)
- [extra_info] should be any additional information needed to make the file
	name unique. For multiple words, separate words using an underscore.

 All PHPUnit-based tests requiring a fully bootstrapped/functioning
Drupal/Tripal instance for effective testing should be included in this
directory. Each one should extend one of the following base classes:

	Drupal\Tests\tripal_chado\Functional\ChadoTestBrowserBase
For any test which needs a chado instance either directly or indirectly.

	Drupal\Tests\tripal\Functional\TripalTestBrowserBase
For any test which needs a Tripal site but will not use Chado in any way.

	Drupal\Tests\BrowserTestBase
For any test which does not use Tripal in any way. If this is the case,
you may want to think about the design of your module to ensure that
it is effectively using all Tripal APIs available.

NOTE: The above list of classes each inherit from those listed below them in
the list. As such, you have all the functionality from the TripalTestBrowserBase
and the Drupal BrowserTestBase available to you when you extend the
ChadoTestBrowserBase.

NOTE: Javascript-focused tests should NOT BE in this directory. Instead they
should be in a FunctionalJavscript directory as they use WebDriver and a
different set of base classes.

Directory Structure

Only tests which apply to the module as a whole should be directly in this folder.

In most cases you will create a folder to indicate a category of tests. For example,
you will create a folder labelled ChadoFields to contain all tests relating
to ChadoField implementations (testing type, widget and formatter).

Rule of Thumb:

	All plugin types should have a folder named the same as the plugin type that
contains all tests for implementations, base classes, and the plugin manager
for that plugin type.

	All services should have its own folder named the same as the service class.
This folder can also include tests for forms, controllers, etc which provide
a user or administrative interface for this service.

	Beyond this, create folders focused on common functionality.

	For example, if this module creates an entity, you may create a folder
named the same as the entity that contains tests related to the entity
classes, forms, list builders, etc.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

